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Abstract 12 
The cover effect in fluvial bedrock erosion is a major control on bedrock channel morphology and long-13 
term channel dynamics. Here, we suggest a probabilistic framework for the description of the cover 14 
effect that can be applied to field, laboratory and modelling data and thus allows the comparison of 15 
results from different sources. The framework describes the formation of sediment cover as a function 16 
of the probability of sediment being deposited on already alleviated areas of the bed. We define 17 
benchmark cases and suggest physical interpretations of deviations from these benchmarks. 18 
Furthermore, we develop a reach-scale model for sediment transfer in a bedrock channel and use it to 19 
clarify the relations between the sediment mass residing on the bed, the exposed bedrock fraction and 20 
the transport stage. We derive system time scales and investigate cover response to cyclic 21 
perturbations. The model predicts that bedrock channels achieve grade in steady state by adjusting 22 
bed cover. Thus, bedrock channels have at least two characteristic time scales of response. Over short 23 
time scales, the degree of bed cover is adjusted such that they can just transport the supplied sediment 24 
load, while over long time scales, channel morphology evolves such that the bedrock incision rate 25 
matches the tectonic uplift or base level lowering rate. 26 
 27 

1. Introduction 28 
 29 
Bedrock channels are shaped by erosion caused by countless impacts of the sediment particles they 30 
carry along their bed (Beer and Turowski, 2015; Cook et al., 2013; Sklar and Dietrich, 2004). There are 31 
feedbacks between the evolving channel morphology, the bedload transport, and the hydraulics 32 
(e.g., Finnegan et al., 2007; Johnson and Whipple, 2007; Wohl and Ikeda, 1997). Impacting bedload 33 
particles driven forward by the fluid forces erode and therefore shape the bedrock bed. In turn, the 34 
morphology of the channel determines the pathways of both sediment and water, and sets the stage 35 
for the entrainment and deposition of the sediment (Hodge and Hoey, 2016). Sediment particles play 36 
a key role in this erosion process; they provide the tools for erosion and also determine where 37 
bedrock is exposed such that it can be worn away by impacting particles (Gilbert, 1877; Sklar and 38 
Dietrich, 2004). 39 
 40 
The importance of the cover effect - that a stationary layer of gravel can shield the bedrock from 41 
bedload impacts – has by now been firmly established in a number of field and laboratory studies 42 
(e.g., Chatanantavet and Parker, 2008; Finnegan et al., 2007; Hobley et al., 2011; Johnson and 43 
Whipple, 2007; Turowski and Rickenmann, 2009; Turowski et al., 2008; Yanites et al., 2011). 44 
Sediment cover is generally modelled with generic relationships that predict the decrease of the 45 
fraction of exposed bedrock area A* with the increase of the relative sediment supply Qs

*, usually 46 
defined as the ratio of sediment supply to transport capacity. Based on laboratory experiments and 47 
simple modeling, Turowski and Bloem (2016) argued that the focus on covered area is generally 48 
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justified on the reach scale and that erosion of bedrock under a thin sediment cover can be 49 
neglected. However, the behavior of sediment cover under flood conditions is currently unknown 50 
and the assumption that the cover distribution at low flow is representative for that at high flow may 51 
not be justified (cf. Turowski et al., 2008). 52 
 53 
The most commonly used function to describe the cover effect is the linear decline (Sklar and 54 
Dietrich, 1998), which is the simplest function connecting the steady state end members of an empty 55 
bed when Qs

* = 0 and full cover when Qs
* = 1: 56 

 57 

𝐴𝐴∗ = �1 − 𝑄𝑄𝑠𝑠∗ for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 58 

(eq. 1) 59 
In contrast, the exponential cover function arises under the assumption that particle deposition is 60 
equally likely for each part of the bed, whether it is covered or not (Turowski et al., 2007).  61 
 62 

𝐴𝐴∗ = �exp(−𝑄𝑄𝑠𝑠∗) for 𝑄𝑄𝑠𝑠∗ < 1
0 otherwise

 63 

(eq. 2) 64 
Here, exp denotes the natural exponential function.  65 
 66 
Hodge and Hoey (2012) obtained both the linear and the exponential functions using a cellular 67 
automaton (CA) model that modulated grain entrainment probabilities by the number of 68 
neighbouring grains. However, consistent with laboratory flume data, the same model also produced 69 
other behaviours under different parameterisations. One alternative behavior is runaway alluviation, 70 
which was attributed by Chatanantavet and Parker (2008) to the differing roughness of bedrock and 71 
alluvial patches. Due to a decrease in flow velocity, an increase in surface roughness and differing 72 
grain geometry, the likelihood of deposition is higher over bed sections covered by alluvium 73 
compared to bare bedrock sections (Hodge et al., 2011). This can lead to rapid alluviation of the 74 
entire bed once a minimum fraction has been covered. The relationship between sediment flux and 75 
cover is also affected by the bedrock morphology; flume experiments have demonstrated that on a 76 
non-planar bed the location of sediment cover is driven by bed topography and hydraulics (e.g., 77 
Finnegan et al., 2007; Inoue et al., 2014). Johnson and Whipple (2007) found that stable patches of 78 
alluvium tended to form in topographic lows such as pot holes and at the bottom of slot canyons, 79 
whereas Hodge and Hoey (2016) found that local flow velocity also controls sediment cover location. 80 
 81 
The relationship between roughness, bed cover and incision was explored in a number of recent 82 
numerical modeling studies. Nelson and Seminara (2011, 2012) were one of the first to model the 83 
impact that the differing roughness of bedrock and alluvial areas has on sediment patch stability. 84 
Zhang et al. (2014) formulated a macro-roughness cover model, in which sediment cover is related to 85 
the ratio of sediment thickness to bedrock macro-roughness. Aubert et al. (2016) directly simulated 86 
the dynamics of particles in a turbulent flow and obtained both linear and exponential cover 87 
functions. Johnson (2014) linked erosion and cover to bed roughness in a reach-scale model. Using a 88 
model formulation similar to that of Nelson and Seminara (2011), Inoue et al. (2016) reproduced bar 89 
formation and sediment dynamics in bedrock channels. All of these studies used slightly different 90 
approaches and mathematical formulations to describe alluvial cover, making a direct comparison 91 
difficult. 92 
 93 
Over time scales including multiple floods, the variability in sediment supply is also important. Lague 94 
(2010) used a model formulation in which cover was written as a function of the average sediment 95 
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depth to upscale daily incision processes to long time scales. He found that over the long term, cover 96 
dynamics are largely independent of the precise formulation at the process scale and are rather 97 
controlled by the magnitude-frequency distribution of discharge and sediment supply. Using the CA 98 
model of Hodge and Hoey (2012), Hodge (in press) found that, when sediment supply was very 99 
variable, sediment cover was primarily determined by the recent history of sediment supply, rather 100 
than the relationships identified under constant sediment fluxes. 101 
 102 
So far, it has been somewhat difficult to compare and discuss the different cover functions obtained 103 
from theoretical considerations, numerical models, and experiments, since a unifying framework and 104 
clear benchmark cases have been missing. Here, we propose such a framework, and develop type 105 
cases linked to physical considerations of the flow hydraulics and sediment erosion and deposition. 106 
We show how this framework can be applied to data from a published model (Hodge and Hoey, 107 
2012). Furthermore, we develop a reach-scale erosion-deposition model that allows the dynamic 108 
modeling of cover and prediction of steady states. Thus, we clarify the relationship between cover, 109 
deposited mass and relative sediment supply. As part of this model framework we investigate the 110 
response time of a channel to a change in sediment input, which we illustrate using data from a 111 
natural channel.  112 
 113 

2. A probabilistic framework 114 
 115 
2.1. Development 116 
Here we build on the arguments put forward by Turowski et al. (2007) and Turowski (2009). Consider 117 
a bedrock bed on which sediment particles are distributed. We can view the deposition of each 118 
particle as a random process, and each area element on the bed surface can be assigned a probability 119 
for the deposition of a particle. When assuming that a given number of particles are distributed on 120 
the bed, the mean behavior of the exposed area can be calculated from the following equation: 121 

𝑑𝑑𝐴𝐴∗ = −𝑃𝑃(𝐴𝐴∗,𝑀𝑀𝑠𝑠
∗, … )𝑑𝑑𝑀𝑀𝑠𝑠

∗ 122 
(eq. 3) 123 
Here, P is the probability that a given particle is deposited on the exposed part of the bed, which may 124 
be a function of the fraction of exposed area, the relative sediment supply, the bed topography and 125 
roughness, the particle size, the local hydraulics or other control variables. Ms

* is a dimensionless 126 
mass equal to the total mass of the particles residing on the bed per area, which is suitably 127 
normalized. A suitable mass for normalization is the minimum mass required to cover a unit area, M0, 128 
as will become clear later. The minus sign is introduced because the fraction of the exposed area 129 
reduces as Ms

* increases. Similar to eq. (3), the equation for the fraction of covered area Ac
* = 1-A* 130 

can be written as: 131 
 132 

𝑑𝑑𝐴𝐴𝑐𝑐∗ = 𝑃𝑃(𝐴𝐴∗,𝑀𝑀𝑠𝑠
∗, … )𝑑𝑑𝑀𝑀𝑠𝑠

∗ 133 
(eq. 4) 134 
As most previous relationships are expressed in terms of Qs

*, the relation of Ms
* to Qs

* will be 135 
discussed later. 136 
 137 
We can make some general statements about P. First, P is defined for the range 0 ≤  A* ≤  1 and 138 
undefined elsewhere. Second, P takes values between zero and one for 0 ≤ A* ≤ 1. Third, P(A*=0) = 0 139 
and P(A*=1) = 1. Note that P is not a distribution function and therefore does not need to integrate 140 
to one. Neither does it have to be continuous and differentiable everywhere. 141 
 142 
For purpose of illustration, we will next discuss two simple forms of the probability function P that 143 
lead to the linear and exponential forms of the cover effect, respectively. First, consider the case that 144 
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all particles are always deposited on exposed bedrock. In this case, formally, to keep with the 145 
conditions stated above, we define P = 1 for 0 < A* ≤ 1 and P = 0 for A* = 0.  Thus, we can write 146 
 147 

𝑑𝑑𝐴𝐴∗ = −𝑑𝑑𝑀𝑀𝑠𝑠
∗ for 0 < 𝐴𝐴∗ ≤ 1

𝑑𝑑𝐴𝐴∗ = 0 for 𝐴𝐴∗ = 0
 148 

(eq. 5) 149 
Integrating, we obtain:  150 

𝐴𝐴∗ = −𝑀𝑀𝑠𝑠
∗ + 𝐶𝐶 151 

(eq. 6) 152 
where the constant of integration C is found to equal one by using the condition A*(Ms

*=0) = 1. Thus, 153 
we obtain the linear cover function of eq. (1). Note that the linear cover function gives a theoretical 154 
lower bound for the amount of cover: it arises when all available sediment always falls on uncovered 155 
ground, and thus no additional sediment is available that could facilitate quicker alluviation. In 156 
essence, this is a mass conservation argument. Now it is obvious why M0 is a convenient way to 157 
normalize: in plots of A* against Ms

*, we obtain a triangular region bounded by the points [0,1], [0,0] 158 
and [1,0] in which the cover function cannot run (Fig. 1).  159 
 160 
Similarly to above, if we set P to a constant value smaller than one for 0 < A* ≤ 1, k, we obtain 161 
 162 

𝐴𝐴∗ = 1 − 𝑘𝑘𝑀𝑀𝑠𝑠
∗ 163 

(eq. 7) 164 
It is clear that the assumption of P = k is physically unrealistic, because it implies that the probability 165 
of deposition on exposed ground is independent of the amount of uncovered bedrock. Especially 166 
when A* is close to zero, it seems unlikely that, say, always 90% of the sediment falls on uncovered 167 
ground. A more realistic assumption is that the probability of deposition on uncovered ground is 168 
independent of location and other possible controls, but is equal to the fraction of exposed area, i.e., 169 
P = A*. In a probabilistic sense, this is also the simplest plausible assumption one can make. Then 170 
 171 

𝑑𝑑𝐴𝐴∗ = −𝐴𝐴∗𝑑𝑑𝑀𝑀𝑠𝑠
∗ 172 

(eq. 8) 173 
giving upon integration 174 

𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗
 175 

(eq. 9) 176 
The argument used here to obtain the exponential cover effect in eq. (9) essentially corresponds to 177 
the one given by Turowski et al. (2007). Since this case presents the simplest plausible assumption, 178 
we will use it as a benchmark case, to which we will compare other possible functional forms of P. 179 
 180 
In principle, the probability function P can be varied to account for various processes that make 181 
deposition more likely either on already covered ground by decreasing P for the appropriate range of 182 
A* from the benchmark case P = A*, or on uncovered ground by increasing P from the benchmark 183 
case P = A*. As has been identified previously (Chatanantavet and Parker, 2008; Hodge and Hoey 184 
2012), roughness feedbacks to the flow can cause either case depending on whether subsequent 185 
deposition is adjacent to or on top of existing sediment patches. In the former case, particles residing 186 
on an otherwise bare bedrock bed act as obstacles for moving particles, and create a low-velocity 187 
wake zone in the downstream direction. In addition, particles residing on other single particles are 188 
unstable and stacks of particles are unlikely. Hence, newly arriving particles tend to deposit either 189 
upstream or downstream of stationary particles and the probability is generally higher for deposition 190 
on uncovered ground than in the benchmark case. In the latter case, larger patches of stationary 191 
particles increase the surface roughness of the bed, thus decreasing the local flow velocity and 192 
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stresses, making deposition on the patch more likely. In this way, the probability of deposition on 193 
already covered bed is increased in comparison to the benchmark case. 194 
 195 
A simple functional form that can be used to take into account either one of these two effects is a 196 
power law dependence of P on A*, taking the form P = A*α (Fig. 1A). Then, the cover function 197 
becomes 198 
 199 

𝐴𝐴∗ = (1 − (1 − 𝛼𝛼)𝑀𝑀𝑠𝑠
∗)

1
1−𝛼𝛼 200 

(eq. 10) 201 
Here, the probability of deposition on uncovered ground is increased in comparison to the 202 
benchmark exponential case if 0 < α < 1, and decreased if α > 1.  203 
 204 
A convenient and flexible way to parameterize P(A*) in general is the cumulative version of the Beta 205 
distribution, given by:  206 

𝑃𝑃(𝐴𝐴∗) = 𝐵𝐵(𝐴𝐴∗;𝑎𝑎, 𝑏𝑏) 207 
(eq. 11) 208 
Here, B(A*;a,b) is the regularized incomplete Beta function with two shape parameters a and b, 209 
which are both real positive numbers, defined by:  210 

𝐵𝐵(𝐴𝐴∗;𝑎𝑎, 𝑏𝑏) =
∫ 𝑦𝑦𝑎𝑎−1(1− 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑦𝑦𝐴𝐴∗

0

∫ 𝑦𝑦𝑎𝑎−1(1− 𝑦𝑦)𝑏𝑏−1𝑑𝑑𝑦𝑦1
0

 211 

(eq. 12) 212 
Here, y is a dummy variable. With suitable choices for a and b, cover functions resembling the 213 
exponential (a=b=1), the linear form (a=0, b>0), and the power law form (a>>b or a<<b) can be 214 
retrieved. Wavy functions are also a possibility (Fig. 2), thus both of the roughness effects described 215 
above can be modelled in a single scenario. Unfortunately, the integral necessary to obtain A*(Ms

*) 216 
does not give a closed-form analytical solution and needs to be computed numerically. 217 
 218 
In principle, a suitable function P could also be defined to account for the influence of bed 219 
topography on sediment deposition. Such a function is likely dependent on the details of the 220 
particular bed, hydraulics and sediment flow paths in a complex way and needs to be mapped out 221 
experimentally. 222 
 223 
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 224 
Fig. 1: A) Various examples for the probability function P as a function of bedrock exposure A*. B) 225 
Corresponding analytical solutions for the cover function between A* and dimensionless sediment 226 
mass Ms

* using eq. (7), (9) and (10). Grey shading depicts the area where the cover function cannot 227 
run due to conservation of mass. 228 
 229 

 230 
Fig. 2: Examples for the use of the regularized incomplete Beta function (eq. 12) to parameterize P, 231 
using various values for the shape parameters a and b. The choice a = b = 1 gives a dependence that 232 
is equivalent to the exponential cover function. Grey shading depicts the area where the cover 233 
function cannot run due to conservation of mass. 234 
 235 
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2.2 Example of application using model data 236 
 237 
To illustrate how the framework can be used, we apply it to data obtained from the CA model 238 
developed by Hodge and Hoey (2012). The CA model reproduces the transport of individual sediment 239 
grains over a bedrock surface. In each time step, the probability of a grain being entrained is a 240 
function of the number of neighboring grains. If five or more of the eight neighbouring cells contain 241 
grains then the grain has probability of entrainment Pc, otherwise it has probability Pi. In most model 242 
runs Pc is less than Pi, thus accounting for the impact of sediment cover in decreasing local shear 243 
stress (though increased flow resistance) and increasing the critical entrainment shear stress for 244 
grains (via lower grain exposure and increased pivot angles).  245 
 246 
The model is run with a domain that is 100 cells wide by 1000 cells long, with each cell having the 247 
same area as a grain. Up to four grains can potentially be entrained from each cell in a time step, 248 
limiting the maximum sediment flux. In each time step random numbers and the probabilities are 249 
used to select the grains that are entrained, which are then moved a step length downstream. A 250 
fixed number of grains are also supplied to the upstream end of the model domain. A smoothing 251 
algorithm is applied to prevent local excessively tall piles of grains. After around 500 time steps the 252 
model typically reaches a steady state condition in which the number of grains supplied to and 253 
leaving the model domain are equal. Sediment cover is measured in a downstream area of the model 254 
domain and is defined as grains that are not entrained in a given time step.  255 
 256 
Model runs were completed with a six different combinations of Pi and Pc: 0.95/0.95, 0.95/0.75, 257 
0.75/0.10, 0.75/0.30, 0.30/0.30 and 0.95/0.05. These combinations were selected to cover the range 258 
of relationships between Qs* and Ac* observed by Hodge and Hoey (2012). For each pair of Pi and Pc 259 
model runs were completed at least 20 different values of Qs* in order to quantify the model 260 
behaviour. 261 
 262 
Cover bed fraction and total mass on the bed given out by the model were converted using eq. (3) 263 
into the probabilistic framework (Fig. 3). The derivative was approximated by simple linear finite 264 
differences, which, in the case of run-away alluviation, resulted in a non-continuous curve due to 265 
large gradients. The exponential benchmark (eq. 9) is also shown for comparison. The different 266 
model parameterisations produce results in which the probability of deposition on bedrock is both 267 
more and less likely than in the baseline case, with some runs showing both behaviours. Cases where 268 
the probability is more than the baseline case (i.e. grains are more likely to fall on uncovered areas) 269 
are associated with runs in which grains in clusters are relatively immobile. These runs are likely to be 270 
particularly affected by the smoothing algorithm that acts to move sediment from alluviated to 271 
bedrock areas. All model parameterisations predict greater bed exposure for a given normalised 272 
mass than is predicted by a linear cover relationship (Figure 3b). Runs with relatively more immobile 273 
cluster grains have a lower exposed fraction for the same normalised mass. Runs with low values of 274 
Pi and Pc seem to lead to behavior in which cover is more likely than in the exponential benchmark, 275 
while for high values, it is less likely. However, there are complex interactions and general 276 
statements cannot be made straightforwardly. 277 
 278 
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 279 
Fig. 3: Probability functions P and cover function derived from data obtained from the model of 280 
Hodge and Hoey (2012). The grey dashed line shows the exponential benchmark behavior. Grey 281 
shading depicts the area where the cover function cannot run due to conservation of mass. The 282 
legend gives values of Pi and Pc used for the runs (see text). 283 
 284 
 285 

3. Cover development in time and space 286 
 287 
3.1. Model derivation 288 
 289 
The probabilistic formulation introduced above can be extended to allow the calculation of the 290 
temporal and spatial evolution of sediment cover in a stream. Here, we will derive the equations for 291 
the one dimensional case (linear flume), but extensions to higher dimensions are possible in 292 
principle. The derivation is inspired by the erosion-deposition framework (e.g. Charru et al., 2004), 293 
with some necessary adaptions to make it suitable for channels with partial sediment cover. In our 294 
system, we consider two separate mass reservoirs within a control volume. The first reservoir 295 
contains all particles in motion, the total mass per bed area of which is denoted by Mm, while the 296 
second reservoir contains all particles that are stationary on the bed, the total mass per bed area of 297 
which is denoted by Ms. We need then three further equations, one to connect the rate of change of 298 
mobile mass to the sediment flux in the flume, one to govern the exchange of particles between the 299 
two reservoirs, and one to describe how sediment transport rate is related to the mobile mass. The 300 
first of these is of course the Exner equation of sediment continuity (e.g. Paola and Voller, 2005), 301 
which captures mass conservation in the system. Instead of the common approach tracking the 302 
height of the sediment over a reference level, we use the total sediment mass on the bed as a 303 
variable, giving 304 
 305 

𝜕𝜕𝑀𝑀𝑚𝑚

𝜕𝜕𝜕𝜕
= −

𝜕𝜕𝑞𝑞𝑠𝑠
𝜕𝜕𝜕𝜕

+ 𝐸𝐸 − 𝐷𝐷 306 

(eq. 13) 307 
Here, x is the coordinate in the streamwise direction, t the time, qs the sediment mass transport rate 308 
per unit width, while E is the mass entrainment rate per bed area and D is the mass deposition rate 309 
per bed area. It is clear that for the problem at hand the choice of total mass or volume as a variable 310 
to track the amount of sediment in the reach of interest is preferable to the height of the alluvial 311 
cover, since necessarily, when cover is patchy, the height of the alluvium varies across the bed. It is 312 
useful to work with dimensionless variables by defining t* = t/T and x* = x/L, where T and L are 313 
suitable time and length scales, respectively. The dimensionless mobile mass per bed area Mm

* is 314 
equal to Mm/M0, and eq. (13) becomes:  315 
 316 
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𝜕𝜕𝑀𝑀𝑚𝑚
∗

𝜕𝜕𝜕𝜕∗
= −

𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝜕𝜕∗
+ 𝐸𝐸∗ − 𝐷𝐷∗ 317 

(eq. 14)  318 
Here,  319 

𝑞𝑞𝑠𝑠∗ =
𝑇𝑇
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑠𝑠 320 

(eq. 15) 321 
The dimensionless entrainment and deposition rates, E* and D*, are equal to TE/M0 and TD/M0, 322 
respectively. The rate of change of the stationary sediment mass Ms in time is the difference of the 323 
deposition rate D and the entrainment rate E.  324 
 325 

𝜕𝜕𝑀𝑀𝑠𝑠

𝜕𝜕𝜕𝜕
= 𝐷𝐷 − 𝐸𝐸 326 

(eq. 16) 327 
Or, using dimensionless variables 328 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝜕𝜕∗
= 𝐷𝐷∗ − 𝐸𝐸∗ 329 

(eq. 17) 330 
We also need sediment entrainment and deposition functions. The entrainment rate needs to be 331 
modulated by the availability of sediment on the bed. If Ms

* is equal to zero, no material can be 332 
entrained. A plausible assumption is that the maximal entrainment rate, E*

max, is equal to the 333 
transport capacity.  334 

𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
∗ = 𝑞𝑞𝑡𝑡∗ 335 

(eq. 18) 336 
Here, qt

 * is the dimensionless mass transport capacity, which is related to the transport capacity per 337 
unit width qt by a relation similar to eq. (15). To first order, the rate of change in entrainment rate, 338 
dE, is proportional to the difference of Emax and E, and to the rate of change in mass on the bed.  339 
 340 

𝑑𝑑𝐸𝐸∗ = (𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠

∗ = (𝑞𝑞𝑡𝑡∗ − 𝐸𝐸∗)𝑑𝑑𝑀𝑀𝑠𝑠
∗ 341 

(eq. 19) 342 
Integrating, we obtain 343 
 344 

𝐸𝐸∗ = 𝐸𝐸𝑚𝑚𝑎𝑎𝑚𝑚
∗ �1− 𝑒𝑒−𝑀𝑀𝑠𝑠

∗� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗�𝑞𝑞𝑡𝑡∗ 345 

(eq. 20)  346 
Here, we used the condition E*(0) = 0 to fix the integration constant to E*

max. As required, eq. (20) 347 
approaches E*

max as Ms
* goes to infinity, and is equal to zero when Ms

* is equal to zero. Using a similar 348 
line of argument, and by assuming the maximum deposition rate to be equal to qs

*, we arrive at an 349 
equation for the deposition rate D*.  350 
 351 

𝐷𝐷∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ �𝑞𝑞𝑠𝑠∗ 352 

(eq. 21) 353 
Substituting eqs. (20) and (21) into eq. (17), we obtain: 354 
 355 

𝜕𝜕𝑀𝑀𝑠𝑠
∗(𝜕𝜕∗, 𝜕𝜕∗)
𝜕𝜕𝜕𝜕∗

= 𝐷𝐷∗ − 𝐸𝐸∗ = �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗ (𝑚𝑚∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝜕𝜕∗, 𝜕𝜕∗) − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗(𝑚𝑚∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝜕𝜕∗, 𝜕𝜕∗) 356 

(eq. 22) 357 
Note that qs

*/qt
* = Qs

*. The equation for the mobile mass (eq. 14) becomes:  358 
 359 

Earth Surf. Dynam. Discuss., doi:10.5194/esurf-2016-59, 2016
Manuscript under review for journal Earth Surf. Dynam.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



10 
 

𝜕𝜕𝑀𝑀𝑚𝑚
∗ (𝜕𝜕∗, 𝜕𝜕∗)
𝜕𝜕𝜕𝜕∗

= −
𝜕𝜕𝑞𝑞𝑠𝑠∗

𝜕𝜕𝜕𝜕∗
− �1 − 𝑒𝑒−𝑀𝑀𝑚𝑚

∗ (𝑚𝑚∗,𝑡𝑡∗)�𝑞𝑞𝑠𝑠∗(𝜕𝜕∗, 𝜕𝜕∗) + �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠
∗(𝑚𝑚∗,𝑡𝑡∗)�𝑞𝑞𝑡𝑡∗(𝜕𝜕∗, 𝜕𝜕∗) 360 

(eq. 23) 361 
Finally, the sediment transport rate needs to be proportional to the mobile sediment mass times the 362 
downstream sediment speed U, and we can write 363 
 364 

𝑞𝑞𝑠𝑠∗(𝜕𝜕∗, 𝜕𝜕∗) = 𝑈𝑈∗(𝜕𝜕∗, 𝜕𝜕∗)𝑀𝑀𝑚𝑚
∗ (𝜕𝜕∗, 𝜕𝜕∗) 365 

(eq. 24) 366 
Here 367 

𝑈𝑈∗ =
𝑇𝑇
𝐿𝐿
𝑈𝑈 368 

(eq. 25) 369 
 370 
After incorporating the original equation between A* and Ms

* (eq. 3), the system of four differential 371 
equations (3), (22), (23) and (24) contains four unknowns: the downstream gradient in the sediment 372 
transport rate ∂qs

*/∂x*, the exposed fraction of the bed A*, the non-dimensional stationary mass Ms
*, 373 

and the non-dimensional mobile mass Mm
*, while the non-dimensional transport capacity qt

* and the 374 
non-dimensional downstream sediment speed U* are input variables, and P is a externally specified 375 
function. In addition, sediment input needs to be specified as an upstream boundary condition and 376 
initial values for the mobile and stationary masses need to be specified everywhere. 377 
 378 

3.2. Time-independent solution 379 
 380 
Setting the time derivatives to zero, we obtain a time-independent solution, which links the exposed 381 
area directly to the ratio of sediment transport rate to transport capacity. From eq. (23) it follows 382 
that in this case, the entrainment rate is equal to the deposition rate and we obtain 383 

�1 − 𝑒𝑒−𝑀𝑀𝑚𝑚
∗������ 𝑞𝑞𝑠𝑠∗��� = �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����� 𝑞𝑞𝑡𝑡∗ 384 
(eq. 26) 385 
Here, the bar over the variables denotes their steady state value. Substituting eq. (24) to eliminate 386 
𝑀𝑀𝑚𝑚
∗����� and solving for 𝑀𝑀𝑠𝑠

∗���� gives 387 
 388 

𝑀𝑀𝑠𝑠
∗���� = −ln �1 − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �

𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗
� = −ln �1 − �1− 𝑒𝑒−

𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗����� 389 

(eq. 27) 390 
Note that we assume here that sediment cover is only dependent on the stationary sediment mass 391 
on the bed and we thus neglect grain-grain interactions known as the dynamic cover (Turowski et al., 392 
2007). In analogy to eq. (24), we can write 393 

𝑞𝑞𝑡𝑡∗ = 𝑈𝑈∗𝑀𝑀0
∗ 394 

(eq. 28) 395 
Here, M0

* is a characteristic dimensionless mass that depends on hydraulics and therefore implicitly 396 
on transport capacity (which is independent of and should not be confused with the minimum mass 397 
necessary to fully cover the bed M0). When sediment transport rate equals transport capacity, then 398 
M0

* is equal to the mobile mass of sediment normalized by the reference mass M0. It can be viewed 399 
as a proxy for the transport capacity and is a convenient parameter to simplify the equations. The 400 
mobile mass can then, in general, be written as (cf. Turowski et al., 2007), remembering that Qs* = 1 401 
when transport is equal to capacity:  402 

𝑀𝑀𝑚𝑚
∗ = 𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗ 403 
(eq. 29) 404 
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If we use the exponential cover function (eq. 9) with eqs. (27), (28) and (29) we obtain 405 
 406 

𝐴𝐴∗��� = 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �
𝑞𝑞𝑠𝑠∗���
𝑞𝑞𝑡𝑡∗

= 1 − �1 − 𝑒𝑒−
𝑞𝑞𝑡𝑡∗
𝑈𝑈∗𝑄𝑄𝑠𝑠

∗����
�𝑄𝑄𝑠𝑠∗���� = 1 − �1 − 𝑒𝑒−𝑀𝑀0

∗𝑄𝑄𝑠𝑠∗����� 𝑄𝑄𝑠𝑠∗���� 407 

(eq. 30) 408 
Similarly, equations can be found for the other analytical solutions of the cover function. For the 409 
linear case (eq. 7), we obtain:  410 

𝐴𝐴∗��� = 1 + ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗����� 411 

(eq. 31) 412 
For the power law case (eq. 10), we obtain: 413 

𝐴𝐴∗��� = �1 + (1 − 𝛼𝛼)ln �1 − �1 − 𝑒𝑒−𝑀𝑀0
∗𝑄𝑄𝑠𝑠∗�����𝑄𝑄𝑠𝑠∗������

1
1−𝛼𝛼 414 

(eq. 32) 415 
It is interesting that the assumption of an exponential cover function essentially leads to a combined 416 
linear and exponential relation between 𝐴𝐴∗��� and  𝑄𝑄𝑠𝑠∗����. Instead of a linear decline as the original linear 417 
cover model, or a concave-up relationship as the original exponential model, the function is convex-418 
up for all solutions (Fig. 4). Adjusting M0

* shifts the lines: decreasing M0
* leads to a delayed onset of 419 

cover and vice versa. The former result arises because a lower M0
* means that the sediment flux is 420 

conveyed through a smaller mass moving at a higher velocity. The original linear cover function (eq. 421 
1) can be recovered from the exponential model with a high value of M0

*, since the exponential term 422 
quickly becomes negligible with increasing 𝑄𝑄𝑠𝑠∗���� and the linear term dominates (Fig. 4C). Note that for 423 
the linear (eq. 6) and the power law cases (eq. 10), high values of M0

* may give 𝐴𝐴∗��� = 0 for 𝑄𝑄𝑠𝑠∗���� < 1 (Fig. 424 
4B,D), which is consistent with the concept of runaway alluviation. Using the beta distribution to 425 
describe P, a numerical solution is necessary, but a wide range of steady-state cover functions can be 426 
obtained (Fig. 5). By varying the value of M0

*, an even wider range of behavior can be obtained. 427 

 428 
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Fig. 4: Analytical solutions at steady state for the exposed fraction of the bed (A*) as a function of 429 
relative sediment supply (Q*, cf. Fig. 1). A) Comparison of the different solutions, keeping M0

* 430 
constant at 1. B) Varying M0

* for the linear case (eq. 31). C) Varying M0
* for the exponential case (eq. 431 

30). D) Varying M0
* for the power law case with α = 0.1 (eq. 32). 432 

 433 

 434 
Fig. 5: Steady state solutions using the beta distribution to parameterize P (eq. 11) for a range of 435 
parameters a and b, and using M0

* = 1 (cf. Fig. 2). The solutions were obtained by iterating the 436 
equations to a steady state, using initial conditions of A* = 1 and Mm

* = Ms
* = 0. 437 

 438 
The previous analysis shows that steady state cover is controlled by the characteristic dimensionless 439 
mass M0

*, which is equal to the ratio of dimensionless transport capacity and particle speed (eq. 28). 440 
Converting to dimensional variables, we can write 441 

𝑀𝑀0
∗ =

𝑞𝑞𝑡𝑡∗

𝑈𝑈∗ =
𝑞𝑞𝑡𝑡
𝑀𝑀0𝑈𝑈

 442 

(eq. 33) 443 
The minimum mass necessary to completely cover the bed per unit area, M0, can be estimated 444 
assuming a single layer of close-packed spherical grains residing on the bed (cf. Turowski, 2009), 445 
giving:  446 

𝑀𝑀0 =
𝜋𝜋𝜌𝜌𝑠𝑠𝐷𝐷50

3√3
 447 

(eq. 34)  448 
Here, ρs is the sediment density and D50 is the median grain size. Fernandez-Luque and van Beek 449 
(1976) derived equations both for the transport capacity and the particle speed from flume 450 
experiments, using bed shear stress as a control parameter (see also Lajeunesse et al., 2010 and 451 
Meyer-Peter and Mueller, 1948 for similar equations). 452 
 453 

𝑞𝑞𝑡𝑡 = 5.7
𝜌𝜌𝑠𝑠𝜌𝜌

(𝜌𝜌𝑠𝑠 − 𝜌𝜌)𝑔𝑔
�
𝜏𝜏
𝜌𝜌
−
𝜏𝜏𝑐𝑐
𝜌𝜌
�
3 2⁄

 454 

(eq. 35) 455 
 456 

𝑈𝑈 = 11.5��
𝜏𝜏
𝜌𝜌
�
1 2⁄

− 0.7 �
𝜏𝜏𝑐𝑐
𝜌𝜌
�
1 2⁄

� 457 

(eq. 36) 458 
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Here, τc is the critical bed shear stress for the onset of bedload motion, g is the acceleration due to 459 
gravity and ρ is the water density. Combining eqs. (34), (35) and (36) to get an equation for M0

* gives: 460 
 461 

𝑀𝑀0
∗ =

3√3
2𝜋𝜋

(𝜃𝜃 − 𝜃𝜃𝑐𝑐)3 2⁄

𝜃𝜃1 2⁄ − 0.7𝜃𝜃𝑐𝑐
1 2⁄ =

3√3𝜃𝜃𝑐𝑐
2𝜋𝜋

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ − 1)3 2⁄

(𝜃𝜃 𝜃𝜃𝑐𝑐⁄ )1 2⁄ − 0.7
 462 

(eq. 37) 463 
Here, the Shields stress θ = τ/(ρs ˗ ρ)gD50, and θc is the corresponding critical Shields stress, and we 464 
approximated 5.7/11.5 = 0.496 with 1/2. At high θ, when the threshold can be neglected, eq. (37) 465 
reduces to a linear relationship between M0

* and θ. Near the threshold, M0
* is shifted to lower values 466 

as θc increases (Fig. 6). The systematic variation of U* with the hydraulic driving conditions (eq. 36) 467 
implies that the cover function evolves differently in response to changes in sediment supply and 468 
transport capacity. For a first impression, by comparing equations (35) and (36), we assume that 469 
particle speed scales with transport capacity raised to the power of one third (Fig. 7).  470 
 471 

 472 
Fig. 6: The characteristic dimensionless mass M0

* depicted as a function of A) the Shields stress and 473 
B) the ratio of Shields stress to critical Shields stress (eq. 37). 474 
 475 

 476 
Fig. 7: Variation of the exposed bed fraction as a function of transport capacity, assuming that 477 
particle speed scales with transport capacity to the power of one third. 478 
 479 

3.3 Temporal evolution of cover within a reach 480 
3.3.1 System timescales 481 
To calculate the temporal evolution of cover on the bed within a single reach, we solved the 482 
equations numerically for a section of the bed with homogenous conditions using a simple linear 483 
finite difference scheme. Then, the sediment input is a boundary condition, while sediment output, 484 
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mobile and stationary sediment mass and the fraction of cover are output variables. In general, a 485 
change in sediment supply leads to a gradual adjustment of the output variables towards a new 486 
steady state (Fig. 8). Unfortunately, a general analytical solution is not possible, but a results can be 487 
obtained for the special case of qs

* = 0. Such a situation is rare in nature, but could be easily created 488 
in flume experiments as a model test. Then, the time derivative of stationary mass is given by:  489 
 490 

𝜕𝜕𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝜕𝜕∗
= −�1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 491 

(eq. 38) 492 
Using the exponential cover model (eq. 9), we obtain:  493 
 494 

1
𝐴𝐴∗(1− 𝐴𝐴∗)

𝜕𝜕𝐴𝐴∗

𝜕𝜕𝜕𝜕∗
= 𝑞𝑞𝑡𝑡∗ 495 

(eq. 39) 496 
Equation (39) is separable and can be integrated to obtain 497 
 498 

ln(𝐴𝐴∗) − ln(1 − 𝐴𝐴∗) = 𝜕𝜕∗𝑞𝑞𝑡𝑡∗ + 𝐶𝐶 499 
(eq. 40) 500 
Letting A*(t*=0) = A*

0, where A*
0 is the initial cover, the final equation is 501 

 502 
1 − 𝐴𝐴∗

1 − 𝐴𝐴0∗
𝐴𝐴0∗

𝐴𝐴∗
= 𝑒𝑒−𝑡𝑡∗𝑞𝑞𝑡𝑡∗ 503 

(eq. 41) 504 
To clarify the characteristic time scale of the process, equation (41) can also be written in the form of 505 
a sigmoidal-type function: 506 
 507 

𝐴𝐴∗ =
1

1 + �1 − 𝐴𝐴0∗
𝐴𝐴0∗

� 𝑒𝑒−𝑡𝑡∗𝑞𝑞𝑡𝑡∗
 508 

(eq. 42) 509 
By making the parameters in the exponent on the right hand side of eq. (42) dimensional, we get:  510 
 511 

𝜕𝜕∗𝑞𝑞𝑡𝑡∗ =
𝜕𝜕
𝑇𝑇

𝑇𝑇
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑡𝑡 =
𝜕𝜕𝑞𝑞𝑡𝑡
𝐿𝐿𝑀𝑀0

 512 

(eq. 43) 513 
which allows a characteristic system time scale TE to be defined as 514 

𝑇𝑇𝐸𝐸 =
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑡𝑡
 515 

(eq. 44) 516 
Since this time scale is dependent on the transport capacity qt, we can view it as a time scale 517 
associated with the entrainment of sediment from the bed (cf. eq. 20) – hence the subscript E on TE. 518 
From eq. (42), the exposed bed fraction evolves in an asymptotic fashion towards equilibrium (Fig. 9). 519 
We can expect that there are other characteristic time scales for the system, for example associated 520 
with sediment deposition or downstream sediment evacuation.  521 
 522 
We can make some further progress and define a more general system time scale by performing a 523 
perturbation analysis (Appendix A). For small perturbations in either qs

* or qt
*, we obtain an 524 

exponential term describing the transient evolution, which allows the definition of a system 525 
timescale TS 526 
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exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠∗���� 𝜕𝜕∗� = exp �−

𝜕𝜕
𝑇𝑇𝑆𝑆
� 527 

(eq. 45)  528 
The characteristic system time scale can then be written as 529 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑡𝑡� �1 − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗����
� �𝑞𝑞𝑠𝑠�𝑞𝑞𝑡𝑡�

�
=
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑡𝑡�
𝑒𝑒𝑀𝑀𝑠𝑠

∗���� 530 

(eq. 46) 531 
Note that for qs

* = 0, eq. (46) reduces to eq. (44), as would be expected. Since 𝑀𝑀𝑠𝑠
∗���� is directly related 532 

to steady state bed exposure 𝐴𝐴∗���, we can rewrite the equation, for example by assuming the 533 
exponential cover function (eq. 3), as 534 

𝑇𝑇𝑆𝑆 =
𝐿𝐿𝑀𝑀0

𝑞𝑞𝑡𝑡𝐴𝐴∗���
 535 

(eq. 47) 536 
Since bed cover is more easily measurable than the mass on the bed, eq. (47) can help to estimate 537 
system time scales in the field. Further, 𝐴𝐴∗��� varies between 0 and 1, which allows estimating a 538 
minimum system time using eq. (44). As 𝐴𝐴∗��� approaches zero, the system time diverges. 539 
 540 
To illustrate these additional dependencies, we have calculated the time need to reach 99.9% 541 
(chosen due to the asymptotic behavior of the system) of total adjustment after a step change in 542 
transport stage, produced by varying particle speed U over a range of plausible values (Fig. 10). 543 
Response time decreases as particle speed increases. This reflects elevated downstream evacuation 544 
for higher particles speeds, resulting in a smaller mobile particle mass and thus higher entrainment 545 
and lower deposition rates. Response time also increases with increasing qs/qt. As the runs start with 546 
zero sediment cover, and the extent of cover increases with qs/qt, at higher qs/qt the adjusted cover 547 
takes longer to develop. 548 
 549 

 550 
Fig. 8: Temporal evolution of cover for a simple case. Here, we used the exponential function for P 551 
(eq. 9) and M0

* = 1. The initial values were A* = 1, Mm
* = Ms

* = 0 and qs
* = 0.25. Sediment supply was 552 

increased to qs
* = 1 at t* = 5. 553 
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 555 
Fig. 9: Evolution of the exposed bed fraction (removal of sediment cover) over time starting with 556 
different initial values of bed exposure, for the special case qs

* = 0 (eq. 41) and qt
* = 1. 557 

 558 

 559 
Fig. 10: Dimensionless time to reach 99.9% of the total adjustment in exposed area as a function of 560 
A) transport stage and B) particle speed. All simulation were started with A* = 1 and Mm

* = Ms
* = 0. 561 

 562 
 563 
 564 
3.3.2 Phase shift and gain in response to a cyclic perturbation 565 
The perturbation analysis (Appendix A) gives some insight into the response of cover to cyclic 566 
sinusoidal perturbations. Let sediment supply be perturbed in a cyclic way described by an equation 567 
of the form  568 

𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝑑𝑑 sin �
2𝜋𝜋𝜕𝜕
𝑝𝑝
� 569 

(eq. 48) 570 
Here, the overbar denotes the temporal average, δqs

* is the time-dependent perturbation, d is the 571 
amplitude of the perturbation and p its period. A similar perturbation can be applied to the transport 572 
capacity (see Appendix A). The reaction of the stationary mass and therefore cover can then also be 573 
described by sinusoidal function of the form (Appendix A)  574 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺 sin �

2𝜋𝜋𝜕𝜕
𝑝𝑝

+ 𝜑𝜑� 575 

(eq. 49) 576 
Here, δMs

* is the perturbation of the stationary sediment mass around the temporal average, G is 577 
known as the gain, describing the amplitude response, and φ is the phase shift. If the gain is large, 578 
stationary mass reacts strongly to the perturbation; if it is small, the forcing does not leave a signal. 579 
The phase shift is negative if the response lags behind the forcing and positive if it leads. The phase 580 
shift can be written as  581 
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𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 582 

(eq. 50) 583 
The gain can be written as 584 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝑑𝑑

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 585 

(eq. 51) 586 
Here, d is the amplitude of the perturbation, and K is a function of the time-averaged values of qs, qt 587 
and U and differs for perturbations in transport capacity and sediment supply (see Appendix A). 588 
Thus, the system behavior can be interpreted as a function of the ratio of the period of perturbation 589 
p and the system time scale Ts. The period p is large if the forcing parameter, i.e., discharge or 590 
sediment supply, varies slowly and small when it varies quickly. According to eq. (50), the phase shift 591 
is equal to -π/2 for low values of p/Ts (quickly-varying forcing parameter), implying a substantial lag in 592 
the adjustment of cover. The phase shift tends to zero as p tends to infinity (Fig. 11). The gain varies 593 
approximately linearly with p/Ts for small p/Ts (quickly-varying forcing parameter), while it is 594 
approximately constant at a value of Kd for large p/Ts (slowly-varying forcing parameter) (eq. 51). 595 
Thus, if the forcing parameter varies slowly, cover adjustment keeps up at all times. 596 
 597 

 598 
Fig. 11: Phase shift (eq. 50) and gain (eq. 51) as a function of the ratio of the period of perturbation 599 
period p and the system time scale Ts. For the calculation, the constant factor in the gain (Kd) was set 600 
equal to one. 601 
 602 
3.3.3 A flood at the Erlenbach 603 
To illustrate the magnitude of the timescales using real data, we use a flood dataset from the 604 
Erlenbach, a sediment transport observatory in the Swiss Prealps (e.g., Beer et al., 2015). There, near 605 
a discharge gauge, bedload transport rates are measured at 1-minute resolution using the Swiss Plate 606 
Geophone System, a highly developed and fully calibrated surrogate bedload measuring system (e.g., 607 
Rickenmann et al., 2012; Wyss et al. 2016). We use data from a flood on 20th June 2007 (Turowski et 608 
al., 2009) with highest peak discharge that has so far been observed at the Erlenbach. The 609 
meteorological conditions that triggered this flood and its geomorphic effects have been described in 610 
detail elsewhere (Molnar et al., 2010; Turowski et al., 2009). Although the Erlenbach does not have a 611 
bedrock bed in the sense that bedrock is exposed in the channel bed, the data provide a realistic 612 
natural time series of discharge and bedload transport over the course of a single event and are ideal 613 
for illustrating possible cover behavior. 614 
 615 
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Using a median grain size of 80 mm, a sediment density of 2650 kg/m3 and a reach length of 50 m, 616 
we obtained M0 = 128 kg/m2. We calculated transport capacity using the equation of Fernandez 617 
Luque and van Beek (1976). However, it is known that this and similar equations strongly 618 
overestimate measured transport rates in streams such as the Erlenbach (e.g., Nitsche et al., 2011). 619 
Consequently, we rescaled by setting the ratio of bedload supply to capacity to one at the highest 620 
discharge. The exposed fraction was then calculated iteratively assuming P = A* (i.e., the exponential 621 
cover formulation). To estimate the period p, one needs to take the derivatives of eq. (48).  622 

𝑑𝑑𝑞𝑞𝑠𝑠∗

𝑑𝑑𝜕𝜕
=
𝑑𝑑𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑑𝑑𝜕𝜕
=

2𝜋𝜋𝑑𝑑
𝑝𝑝

cos �
2𝜋𝜋𝜕𝜕
𝑝𝑝
� 623 

(eq. 52)  624 
Setting t = 0 for the time of interest, we can relate p to the local gradient in bedload supply, which 625 
can be measured from the data. 626 
 627 

2𝜋𝜋𝑑𝑑
𝑝𝑝

=
∆𝑞𝑞𝑠𝑠∗

∆𝜕𝜕
 628 

(eq. 52)  629 
Assuming that all change in the response time is due to changes in the period (i.e., assuming constant 630 
amplitude, d = 1), we can obtain a conservative estimate of the range over which p varies over the 631 
course of an event. 632 

𝑝𝑝 = 2𝜋𝜋
∆𝜕𝜕
∆𝑞𝑞𝑠𝑠∗

 633 

(eq. 52)  634 
In the exemplary event, the evolution and final value of bed cover depends strongly on its initial 635 
value (Fig. 12), indicating that the adjustment is incomplete. The system timescale is generally larger 636 
than 1000s and is inversely related to discharge via the dependence on transport capacity. The 637 
p/Ts ratio varies around one, with low values at the beginning of the flood and large values in the 638 
waning hydrograph. Both the high system times and the smooth evolution of bed cover over the 639 
course of the flood imply that cover development cannot keep up with the variation in the forcing 640 
characteristics. This dynamic adjustment of cover, which can lag forcing processes, may thus play an 641 
important role in the dynamics of bedrock channels and probably needs to be taken into account in 642 
modelling exercises. 643 
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 644 
Fig. 12: Calculated evolution of cover during the largest event observed at the Erlenbach on 20th June 645 
2007 (Turowski et al., 2009). Bedload transport rates were measured with the Swiss Plate geophone 646 
sensors calibrated with direct bedload samples (Rickenmann et al., 2012). The final fraction of 647 
exposed bedrock is strongly dependent on its initial value. 648 
 649 

4.  Discussion  650 
4.1 Model formulation 651 

In principle, the framework for the cover effect presented here allows the formulation of a general 652 
model for bedrock channel morphodynamics without the restrictions of previous models (e.g. Zhang 653 
et al., 2015). To achieve this, the dependency of P on various control parameters needs to be 654 
specified. In general, P should be controlled by local topography, grain size and shape, hydraulic 655 
forcing, and the amount of sediment already residing on the bed. Furthermore, the shape of the P 656 
function should also be affected by feedbacks between these properties, such as the development of 657 
sediment cover altering the local roughness and hence altering hydraulics and local transport 658 
capacity (Inoue et al., 2014; Johnson, 2014). Within the treatment presented here, we have explicitly 659 
accounted only for the impact of the amount of sediment already on the bed. However, all of the 660 
mentioned effects can be included implicitly by an appropriate choice of P. The exact relationships 661 
between, say, bed topography and P need to be mapped out experimentally (e.g., Inoue et al., 2014), 662 
with theoretical approaches also providing some direction (cf. Johnson, 2014; Zhang et al., 2015). 663 
Currently available experimental results (Chatanantavet and Parker, 2008; Finnegan et al., 2007; 664 
Hodge and Hoey, 2016; Inoue et al., 2014; Johnson and Whipple, 2007) cover only a small range of 665 
the possible parameter space and do not generally report all necessary parameters. Specifically the 666 
stationary mass of sediment residing on the bed is generally not reported and can be difficult to 667 
determine experimentally, but is necessary to determine P. Nevertheless, depending on the choice 668 
of P, our model can yield a wide range of cover functions that encompasses reported functions both 669 
from numerical modelling (e.g., Aubert et al., 2016; Hodge and Hoey, 2012; Johnson, 2014) and 670 
experiments (Chatanantavet and Parker, 2008; Inoue et al., 2014; Sklar and Dietrich, 2001). 671 
 672 
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The dynamic model put forward here is a minimum first order formulation, and there are some 673 
obvious future alterations. We only take account of the static cover effect caused by immobile 674 
sediment on the bed. The dynamic cover effect, which arises when moving grains interact at high 675 
sediment concentration and thus reduce the number of impacts on the bed (Turowski et al., 2007), 676 
could in principle be included into the formulation, but would necessitate a second probability 677 
function specifically to describe this dynamics cover. It would also be possible to use different P-678 
functions for entrainment and deposition, thus introducing hysteresis into cover development. Such 679 
hysteresis has been observed in experiments in which the equilibrium sediment cover was a function 680 
of the initial extent of sediment cover (Chatanantavet and Parker, 2008; Hodge and Hoey, 2012). 681 
Whether such alterations are necessary is best established with targeted laboratory experiments.  682 
 683 
4.2 Comparison to previous modelling frameworks 684 
We will briefly outline in this section the main differences to previous formulations of cover dynamics 685 
in bedrock channels. Thus, the novel aspects of our formulation and the respective advantages and 686 
disadvantages will become clear. 687 
 688 
Aubert et al. (2015) coupled the movement of spherical particles to the simulation of a turbulent 689 
fluid and investigated how cover depended on transport capacity and supply. Similar to what is 690 
predicted by our analytical formulation, they found a range of cover function for various model set-691 
ups, including linear and convex-up relationships (compare the results in Fig. 4 to their Fig. 15). 692 
Despite short-comings, Aubert et al. (2015) presented the so far most detailed physical simulations of 693 
bed cover formation and the correspondence between the predictions is encouraging. 694 
 695 
Nelson and Seminara (2011, 2011) formulated a morphodynamic model for bedrock channels. They 696 
based their formulation on sediment concentration, which is in principle similar to our formulation 697 
based on mass. However, Nelson and Seminara (2011, 2012) did not distinguish between mobile and 698 
stationary sediment and linked local transport directly to sediment concentration. Further, a given 699 
mass can be distributed in multiple ways to achieve various degrees of cover, a fact that is quantified 700 
in our formulation by the probability parameter P. Nelson and Seminara (2011, 2012) assumed a 701 
direct correspondence between sediment concentration and degree of cover, which is equivalent to 702 
the linear cover assumption (eq. 7), with the associated problems outlined earlier. Practically, this 703 
implies that the grid size needs to be of the order of the grain size. Although different in various 704 
details, Inoue et al. (2016) have used essentially the same approach as Nelson and Seminar (2011, 705 
2012) to link bedload concentration, transport and bed cover. Both of these models allow the 2D 706 
modelling of bedrock channel morphology. Although we have not fully developed such a model in 707 
the present paper, our model framework could easily be extended to 2D problems.  708 
 709 
Zhang et al. (2015) formulated a bed cover model specifically for beds with macro-roughness. There, 710 
deposited sediment always fills topographic lows from their deepest positions, such that there is a 711 
reach-uniform sediment level. While the model is interesting and provides a fundamentally different 712 
approach to what is suggested here, its applicability is limited to very rough beds and the assumption 713 
of a sediment elevation that is independent of the position on the bed seems physically unrealistic. In 714 
principle, the probabilistic framework presented here should be able to deal with macro-rough beds 715 
as well and thus allows a more general treatment of the problem of bed cover. 716 
 717 
Within this paper, we focused on the dynamics of bed cover, rather than modelling the dynamics of 718 
entire channels. The probabilistic formulation using the parameter P provides a flexible framework 719 
to connect the sediment mass residing on the bed with the exposed bedrock fraction. This particular 720 
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element has not been treated in any of the previous models and could be easily implemented in 721 
other approaches dealing with sediment fluxes along and across the stream and the interaction with 722 
erosion and, over long time scales, channel morphology. However, it is as yet unclear how flow 723 
hydraulics, sediment properties and other conditions affect P and this should be investigated in 724 
targeted laboratory experiments. Nevertheless, the proposed formulation provides a framework in 725 
which data from various sources can be easily compared and discussed. 726 
 727 
4.3 Further implications 728 
Based on field data interpretation, Phillips and Jerolmack (2016) argued that bedrock rivers adjust 729 
such that, similar to alluvial channels, medium sized floods are most effective in transporting 730 
sediment, and that channel geometry therefore can quickly adjust their transport capacity to the 731 
applied load and therefore achieve grade (cf. Mackin, 1948). Contrary to the suggestion of Phillips 732 
and Jerolmack (2016) that this is achieved by changing channel morphologic parameters such as 733 
width, our model suggests that bed cover is adjusted. Furthermore changes in sediment cover can 734 
occur far more rapidly than morphological changes. In steady state, time derivatives need to be equal 735 
to zero to be equal to zero. Thus, entrainment equals deposition (eq. 16), implying that the 736 
downstream gradient in sediment transport rate is equal to zero (eq. 14). When sediment supply or 737 
transport capacity change, the exposed bedrock fraction can adjust to achieve a new steady state 738 
and a change of the channel geometry is unnecessary. Whether a steady state is achieved depends 739 
on the relative magnitude of the timescales of perturbation and cover adjustment (see section 3.2). 740 
 741 

5. Conclusions 742 
 743 
The probabilistic view put forward in this paper offers a framework into which diverse data on bed 744 
cover, whether obtained from field studies, laboratory experiments or numerical modeling, can be 745 
easily converted to be meaningfully compared. The conversion requires knowledge of the mass of 746 
sediment on the bed and the evolution of exposed fraction of the bed. Within the framework, 747 
individual data sets can be compared to the exponential benchmark and linear limit cases, enabling 748 
physical interpretation. Furthermore, the formulation allows the general dynamic sub-grid modelling 749 
of bed cover. Depending on the choice of P, the model yields a wide range of possible cover 750 
functions. Which of these functions are appropriate for natural rivers and how they vary with factors 751 
including topography needs to mapped out experimentally. 752 
 753 
It needs to be noted here that the precise formulation of the entrainment and deposition functions 754 
also affects steady state cover relations. When calibrating P on data, it cannot always be decided 755 
whether a specific deviation from the benchmark case results from varying entrainment and 756 
deposition processes or from changes in the probability function driven for example by variations in 757 
roughness. For the prediction of the steady state cover relations and for the comparison of data sets, 758 
this should not matter, but the dynamic evolution of cover could be strongly affected. 759 
 760 
The system timescale for cover adjustment is inversely related to transport capacity. This time scale 761 
can be long and in many realistic situations, cover cannot instantaneously adjust to changes in the 762 
forcing conditions. Thus, dynamic cover adjustment needs to be taken into account when modelling 763 
the long-term evolution of bedrock channels. 764 
 765 
Our model formulation implies that bedrock channels adjust bed cover to achieve grade. Therefore, 766 
bedrock channel evolution is driven by two optimization principles. On short time scales, bed cover 767 
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adjusts to match the sediment output of a reach to its input. Over long time scales, width and slope 768 
of the channel evolve to match long-term incision rate to tectonic uplift or base level lowering rates.  769 
  770 
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Appendix A: Perturbation analysis  771 
 772 
Here, we derive the effect of a small sinusoidal perturbation of the driving variables, namely 773 
sediment supply qs

* and transport capacity qt
*, on cover development. The perturbation of the 774 

driving variables can be written as  775 
𝑞𝑞𝑠𝑠∗ = 𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗ 776 

(eq. A1) 777 
𝑞𝑞𝑡𝑡∗ = 𝑞𝑞𝑡𝑡∗��� + 𝛿𝛿𝑞𝑞𝑡𝑡∗ 778 

(eq. A2) 779 
Here, the bar denotes the average of the quantity at steady state, while δqs

* and δqt
* denote the 780 

small perturbation. The exposed area can be similarly written as  781 
𝐴𝐴∗ = 𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ 782 

(eq. A3) 783 
Steady state cover is directly related to the mass on the bed Ms

* by eq. (3), which we can rewrite as  784 
𝑑𝑑𝐴𝐴∗

𝑑𝑑𝜕𝜕
= −𝑃𝑃

𝑑𝑑𝑀𝑀𝑠𝑠
∗

𝑑𝑑𝜕𝜕
 785 

(eq. A4) 786 
Substituting eq. (A3) and a similar equation for Ms

*, 787 
𝑀𝑀𝑠𝑠
∗ = 𝑀𝑀𝑠𝑠

∗���� + 𝛿𝛿𝑀𝑀𝑠𝑠
∗ 788 

(eq. A5) 789 
 we obtain 790 

𝑑𝑑𝛿𝛿𝐴𝐴∗

𝑑𝑑𝜕𝜕
= −𝑃𝑃

𝑑𝑑𝛿𝛿𝑀𝑀𝑠𝑠
∗

𝑑𝑑𝜕𝜕
 791 

(eq. A6) 792 
Here, the averaged terms drop out as they are independent of time. If P and the steady state 793 
solution for A* are known, a direct relationship between A* and Ms

* can be derived. For example, for 794 
the exponential cover model (eq. 2), substituting eqs. (A3) and (A5), we find 795 

𝐴𝐴∗��� + 𝛿𝛿𝐴𝐴∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝑒𝑒−𝑀𝑀𝑠𝑠
∗����𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠

∗ = 𝐴𝐴∗���𝑒𝑒−𝛿𝛿𝑀𝑀𝑠𝑠
∗ ≈ 𝐴𝐴∗���(1 − 𝛿𝛿𝑀𝑀𝑠𝑠

∗) 796 
(eq. A7) 797 
Here, since the δ variables are small, we approximated the exponential term using a Taylor expansion 798 
to first order. We obtain  799 

𝛿𝛿𝐴𝐴∗ = −𝐴𝐴∗���𝛿𝛿𝑀𝑀𝑠𝑠
∗ 800 

(eq. A8) 801 
It is therefore sufficient to derive the perturbation solution for Ms

*, the time evolution of which is 802 
given by eq. (22). Eliminating Mm

* using eq. (24), we obtain 803 
𝜕𝜕𝑀𝑀𝑠𝑠

∗

𝜕𝜕𝜕𝜕∗
= �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗ − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗�𝑞𝑞𝑡𝑡∗ 804 

(eq. A9) 805 
 806 
Perturbation of sediment supply 807 
 808 
First, let’s look at a perturbation of sediment supply qs

*, while other parameters are held constant. 809 
Substituting eq. (A1) and (A5) into (A9), we obtain 810 

𝜕𝜕𝛿𝛿𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝜕𝜕∗
= �1 − 𝑒𝑒−

�𝑞𝑞𝑠𝑠∗���+𝛿𝛿𝑞𝑞𝑠𝑠∗�
𝑈𝑈∗
� � �𝑞𝑞𝑠𝑠∗��� + 𝛿𝛿𝑞𝑞𝑠𝑠∗� − �1 − 𝑒𝑒−𝑀𝑀𝑠𝑠

∗����−𝛿𝛿𝑀𝑀𝑠𝑠
∗� 𝑞𝑞𝑡𝑡∗ 811 

(eq. A10) 812 
Again, since the δ variables are small, we can replace the relevant exponentials with Taylor expansion 813 
to first order: 814 
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𝑒𝑒−
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� ≈ 1 −
𝛿𝛿𝑞𝑞𝑠𝑠∗

𝑈𝑈∗  815 

(eq. A11) 816 
A similar approximation applies for the exponential in Ms

*. Substituting eq. (A11) into eq. (A10), 817 
expanding the multiplicative terms, dropping terms of second order in the δ variables and 818 
rearranging, we get 819 

𝜕𝜕𝛿𝛿𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝜕𝜕∗
= 𝛿𝛿𝑞𝑞𝑠𝑠∗ �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� +

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗� � − 𝛿𝛿𝑀𝑀𝑠𝑠

∗ �𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗���� 820 

(eq. A12) 821 
The perturbation is assumed to be sinusoidal  822 

𝛿𝛿𝑞𝑞𝑠𝑠∗ = 𝑑𝑑 sin�
2𝜋𝜋𝜕𝜕
𝑝𝑝
� 823 

(eq. A13) 824 
Here, p is the period of the perturbation and d is its amplitude. Note that, to be consistent with the 825 
assumptions previously made, d needs to be small in comparison with the average sediment supply. 826 
Substituting, eq. (A12) can be integrated to obtain the solution  827 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑠𝑠∗ sin�

2𝜋𝜋𝜕𝜕
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑠𝑠∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗ − �1− 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����
𝜕𝜕
𝑇𝑇�

 828 

where C is a constant of integration. The gain is given by 829 

𝐺𝐺𝑞𝑞𝑠𝑠∗ =
𝑝𝑝
𝑇𝑇

�1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� + 𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒−

𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗� �𝑑𝑑

��𝑞𝑞𝑡𝑡∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� � 𝑞𝑞𝑠𝑠∗����
2

�𝑝𝑝𝑇𝑇�
2

+ 4𝜋𝜋2

 830 

(eq. A14) 831 
And the phase shift by 832 

𝜑𝜑𝑞𝑞𝑠𝑠∗ = tan−1

⎣
⎢
⎢
⎢
⎡
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗ − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� �𝑞𝑞𝑠𝑠∗����⎦
⎥
⎥
⎥
⎤
 833 

(eq. A15) 834 
 835 
Perturbation of transport capacity 836 
 837 
The perturbation of the transport capacity qt

* is a little more complicated, since both qt
* and U* are 838 

explicitly dependent on hydraulics (e.g., shear stress; see eqs. 43 and 44), and thus U* is implicitly 839 
dependent on qt

* and δqt
*. To circumvent this problem, we expand the exponential term featuring 840 

U*(δqt
*) in eq. (A9) using a Taylor series expansion around δqt

* = 0.  841 
 842 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗)� ≈ exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗2(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)
𝜕𝜕𝑈𝑈∗

𝜕𝜕𝛿𝛿𝑞𝑞𝑡𝑡∗
(𝛿𝛿𝑞𝑞𝑡𝑡∗ = 0)𝛿𝛿𝑞𝑞𝑡𝑡∗� 843 

(eq. A16) 844 
Both U* and its derivative are constants when evaluated at δqt

* = 0. We can thus write 845 
 846 

exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗� = exp �−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �1 −
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����2
�
𝜕𝜕𝑈𝑈∗

𝜕𝜕𝛿𝛿𝑞𝑞𝑡𝑡∗
�

����������
𝛿𝛿𝑞𝑞𝑡𝑡∗� = [1 − 𝐶𝐶0𝛿𝛿𝑞𝑞𝑡𝑡∗]𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗�����  847 

 848 
(eq. A17) 849 
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Here, C0 is a constant. Proceeding as before by substituting eq. (A2), (A8) and (A17) into (A9), 850 
expanding exponential terms containing δ variables, dropping terms of second order in the δ 851 
variables and rearranging, we obtain:  852 

𝜕𝜕𝛿𝛿𝑀𝑀𝑠𝑠
∗

𝜕𝜕𝜕𝜕∗
= �𝐵𝐵𝑞𝑞𝑠𝑠∗𝑒𝑒

−𝑞𝑞𝑠𝑠
∗

𝑈𝑈∗����� + 𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� − 1�𝛿𝛿𝑞𝑞𝑡𝑡∗ − 𝛿𝛿𝑀𝑀𝑠𝑠

∗𝑞𝑞𝑡𝑡∗���𝑒𝑒−𝑀𝑀𝑠𝑠
∗���� 853 

(eq. A18) 854 
A sinusoidal perturbation of the form  855 

𝛿𝛿𝑞𝑞𝑡𝑡∗ = 𝑑𝑑 sin�
2𝜋𝜋𝜕𝜕
𝑝𝑝
� 856 

(eq. A19) 857 
yields the solution  858 

𝛿𝛿𝑀𝑀𝑠𝑠
∗ = 𝐺𝐺𝑞𝑞𝑡𝑡∗ sin �

2𝜋𝜋𝜕𝜕
𝑃𝑃

+ 𝜑𝜑𝑞𝑞𝑡𝑡∗� + 𝐶𝐶exp �−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝜕𝜕
𝑝𝑝� �

−�𝑞𝑞𝑡𝑡∗��� − �1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠∗�
𝜕𝜕
𝑇𝑇�

 859 

with  860 

𝐺𝐺𝑞𝑞𝑡𝑡∗ =
𝑝𝑝
𝑇𝑇

�𝑞𝑞𝑠𝑠
∗2

𝑈𝑈∗����2
� 𝜕𝜕𝑈𝑈

∗

𝜕𝜕𝛿𝛿𝑞𝑞𝑡𝑡∗
�

���������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�𝑑𝑑

�𝑞𝑞𝑡𝑡∗���
2 �𝑝𝑝𝑇𝑇�

2
�1 − �1 − 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗� � 𝑞𝑞𝑠𝑠

∗

𝑞𝑞𝑡𝑡∗���
�
2

+ 4𝜋𝜋2

 861 

(eq. A20) 862 
and 863 

𝜑𝜑 = tan−1

⎝

⎜
⎛
−

2𝜋𝜋
𝑝𝑝
𝑇𝑇 �𝑞𝑞𝑡𝑡

∗��� − �1− 𝑒𝑒−
𝑞𝑞𝑠𝑠∗

𝑈𝑈∗����� �𝑞𝑞𝑠𝑠∗�
⎠

⎟
⎞

 864 

(eq. A21) 865 
 866 
Summary 867 
 868 
Using the system timescale TS, the phase shift and gain can be generally rewritten as 869 
 870 

𝜑𝜑 = tan−1 �−2𝜋𝜋
𝑇𝑇𝑆𝑆
𝑝𝑝
� 871 

(eq. A22)  872 

𝐺𝐺 =
𝑝𝑝
𝑇𝑇𝑆𝑆

𝐾𝐾𝑑𝑑

�� 𝑝𝑝𝑇𝑇𝑆𝑆
�
2

+ 4𝜋𝜋2
 873 

(eq. A23) 874 
Here, K differs for perturbations in sediment supply and transport capacity, given by the equations 875 
 876 

𝐾𝐾𝑞𝑞𝑠𝑠∗ = 1 − 𝑒𝑒−
𝑞𝑞𝑠𝑠∗���

𝑈𝑈∗� +
𝑞𝑞𝑠𝑠∗���
𝑈𝑈∗ 𝑒𝑒

−𝑞𝑞𝑠𝑠
∗���
𝑈𝑈∗�  877 

(eq. A24) 878 

𝐾𝐾𝑞𝑞𝑡𝑡∗ =
𝑞𝑞𝑠𝑠∗

2

𝑈𝑈∗����2
�
𝜕𝜕𝑈𝑈∗

𝜕𝜕𝛿𝛿𝑞𝑞𝑡𝑡∗
�

����������
𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� − �1− 𝑒𝑒−

𝑞𝑞𝑠𝑠∗
𝑈𝑈∗����� �

𝑞𝑞𝑠𝑠∗

𝑞𝑞𝑡𝑡∗���
 879 

(eq. A25) 880 
 881 
  882 
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Notation 883 
 884 
Overbars denote time-averaged quantities. 885 
 886 
a  Shape parameter in the regularized incomplete Beta function. 887 
A*  Fraction of exposed (uncovered) bed area. 888 
b  Shape parameter in the regularized incomplete Beta function. 889 
B  Regularized incomplete Beta function. 890 
C  Constant of integration. 891 
C0  Constant [m2s/kg]. 892 
d  Amplitude of perturbation [kg/m2s]. 893 
D  Sediment deposition rate per bed area [kg/m2s].  894 
D*  Dimensionless sediment deposition rate. 895 
D50  Median grain size [m]. 896 
e  Base of the natural logarithm. 897 
E  Sediment entrainment rate per bed area [kg/m2s].  898 
E*  Dimensionless sediment entrainment rate. 899 
Emax   Maximal possible dimensionless sediment entrainment rate. 900 
g  Acceleration due to gravity [m/s2]. 901 
G  Gain [kg/m2s]. 902 
I   Non-dimensional incision rate. 903 
k  Probability of sediment deposition on uncovered parts of the bed, linear 904 

implementation.  905 
kI Non-dimensional erodibility.  906 
K Parameter in the gain equation. 907 
L Characteristic length scale [m]. 908 
M0  Minimum mass per area necessary to cover the bed [kg/m2].  909 
M0

*  Dimensionless characteristic sediment mass.  910 
Mm  Mobile sediment mass [kg/m2]. 911 
Mm

*  Dimensionless mobile sediment mass.  912 
Ms  Stationary sediment mass [kg/m2]. 913 
Ms

*  Dimensionless stationary sediment mass. 914 
p  Period of perturbation [s]. 915 
P  Probability of sediment deposition on uncovered parts of the bed. 916 
qs  Mass sediment transport rate per unit width [kg/ms]. 917 
qs

*  Dimensionless sediment transport rate.  918 
qt  Mass sediment transport capacity per unit width [kg/ms]. 919 
qt

*  Dimensionless transport capacity. 920 
Qs

*  Relative sediment supply; sediment transport rate over transport capacity.  921 
Qt  Mass sediment transport capacity [kg/s]. 922 
t  Time variable [s]. 923 
t*  Dimensionless time.  924 
T  Characteristic time scale [s].  925 
TE  Characteristic time scale for sediment entrainment [s].  926 
TS  Characteristic system time scale [s]. 927 
U  Sediment speed [m/s]. 928 
U*  Dimensionless sediment speed. 929 
x  Dimensional streamwise spatial coordinate [m].  930 
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x*  Dimensionless streamwise spatial coordinate. 931 
y  Dummy variable. 932 
α  Exponent.  933 
γ  Fraction of pore space in the sediment. 934 
δ  denotes time-varying component. 935 
θ  Shields stress. 936 
θc  Critical Shields stress. 937 
ρ  Density of water [kg/m3].  938 
ρs  Density of sediment [kg/m3]. 939 
τ  Bed shear stress [N/m2].  940 
τc  Critical bed shear stress at the onset of bedload motion [N/m2]. 941 
 942 

  943 
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